Enhancing Back Propagation Neural Network Algorithm with Adaptive Gain on Classification Problems

نویسندگان

  • Nazri Mohd Nawi
  • Abdul Hamid
  • Rozaida Ghazali
  • Mohd Najib Mohd Salleh
چکیده

The standard back propagation algorithm for training artificial neural networks utilizes two terms, a learning rate and a momentum factor. The major limitations of this standard algorithm are the existence of temporary, local minima resulting from the saturation behaviour of the activation function, and the slow rates of convergence. Previous research demonstrated that in ‘feed forward’ algorithm, the slope of the activation function is directly influenced by a parameter referred to as ‘gain’. This research proposed an algorithm for improving the performance of the back propagation algorithm by introducing the adaptive gain of the activation function. The efficiency of the proposed algorithm is compared with conventional Gradient Descent Method and verified by means of simulation on four classification problems. In learning the patterns, the simulations result demonstrate that the proposed method converged faster on Wisconsin breast cancer and diabetes classification problem with an improvement ratio of nearly 2.8 and 1.2, 65% better on thyroid data sets and 97% success on IRIS classification problem. The results clearly show that the proposed algorithm significantly improves the learning speed of the conventional back-propagation algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Gain Variation in Improving Learning Speed of Back Propagation Neural Network Algorithm on Classification Problems

We proposed a method for improving the performance of the back propagation algorithm by introducing the adaptive gain of the activation function. In a ‘feed forward’ algorithm, the slope of the activation function is directly influenced by a parameter referred to as ‘gain’. In this paper, the influence of the adaptive gain on the learning ability of a neural network is analysed. Multi layer fee...

متن کامل

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...

متن کامل

Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network

Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...

متن کامل

Application of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction

This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011